Directed Linking of Carbon Nanotubes with Single CdSe Quantum Dots

نویسندگان

  • Todd D. Krauss
  • Kathryn E. Leach
چکیده

Metallic single-walled carbon nanotubes (SWNTs or NTs) are the ideal nanometer-scale wire, as they can withstand current densities up to 2 to 3 orders of magnitude higher than copper currently used in electronic chips [1]. These conductive NTs can be utilized as nano-electrodes to electrically contact another nanoscale object, such as a single semiconductor quantum dot (QD) or metallic nanoparticle (NP). We have designed a strategy for directed assembly of fabricated QD–SWNT devices. NTs were grown across patterned catalyst islands on a silicon wafer followed by electrode placement. After cutting the NTs, the resulting carboxyl group moieties found at the cut NT edges were used to covalently attach amine-functionalized cadmium selenium (CdSe) QDs or gold (Au) NPs. Electrostatic force microscopy (EFM) was used to monitor NT conductivity before and after cutting, as well as after NP attachment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In situ electrochemical organization of CdSe nanoclusters on graphene during unzipping of carbon nanotubes.

In situ decoration of very small CdSe quantum dots on graphene nanoribbons (GNRs) has been achieved during the electrochemical unzipping of single walled carbon nanotubes. Critical parameters like the width of the GNRs, size distribution of quantum dots and their organization on GNRs have been shown to be strongly dependent on the electric field and time.

متن کامل

High temperature acidic oxidation of multiwalled Carbon nanotubes and synthesis of Graphene quantum dots

The acid oxidation of carbon nanotube generally results in opening the close ends of the nanotube and to make surface modifications. Herewith, Multiwall carbon nanotubes (MWCNTs) were oxidized in acids at high temperature experimental conditions which led to the formation of graphene quantum dots (GQDs).   High resolution transmission electron microscope (HRTEM), energy dispersive X-ray spectro...

متن کامل

P-156: A Study about Toxicity of CdSe Quantum Dots on Male Sexual System of Mice and Controlling This Toxicity by ZnS Coverage in Immature Mice

Background: Quantum dots are commonly composed of cadmium contained semiconductors. Cadmium is potentially hazardous but toxicity of such quantum dots is not yet systematically investigated. On the other hand, in vitro studies have shown almost complete control of CdSe induced cytotoxicity by ZnS coverage. Toxicity of CdSe quantum dots and controlling this toxicity by ZnS coverage in immature m...

متن کامل

High temperature acidic oxidation of multiwalled Carbon nanotubes and synthesis of Graphene quantum dots

The acid oxidation of carbon nanotube generally results in opening the close ends of the nanotube and to make surface modifications. Herewith, Multiwall carbon nanotubes (MWCNTs) were oxidized in acids at high temperature experimental conditions which led to the formation of graphene quantum dots (GQDs).   High resolution transmission electron microscope (HRTEM), energy dispersive X-ray spectro...

متن کامل

Label-free and highly sensitive electrochemiluminescence biosensing using quantum dots/carbon nanotubes in ionic liquid.

Combining with the synergic effect of carbon nanotubes and ionic liquids for enhancing electrochemiluminescence (ECL) response of CdSe QDs, a universal strategy for highly sensitive biosensing was designed. Using alpha-fetoprotein as a model and monitoring the variation of ECL intensity before and after immunoreaction, a label-free ECL biosensor was developed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008